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In dimension d�3, the directed polymer in a random medium undergoes a phase transition between a free
phase at high temperature and a low-temperature disorder-dominated phase. For the latter phase, Fisher and
Huse have proposed a droplet theory based on the scaling of the free-energy fluctuations �F�l�� l� at scale l.
On the other hand, in related growth models belonging to the Kardar-Parisi-Zhang universality class, Forrest
and Tang have found that the height-height correlation function is logarithmic at the transition. For the directed
polymer model at criticality, this translates into logarithmic free-energy fluctuations �FTc

�l���ln l�� with �

=1/2. In this paper, we propose a droplet scaling analysis exactly at criticality based on this logarithmic
scaling. Our main conclusion is that the typical correlation length ��T� of the low-temperature phase diverges
as ln ��T���−ln�Tc−T��1/���−ln�Tc−T��2, instead of the usual power law ��T���Tc−T�−�. Furthermore, the
logarithmic dependence of �FTc

�l� leads to the conclusion that the critical temperature Tc actually coincides
with the explicit upper bound T2 derived by Derrida and co-workers, where T2 corresponds to the temperature
below which the ratio ZL

2 / �ZL�2 diverges exponentially in L. Finally, since the Fisher-Huse droplet theory was
initially introduced for the spin-glass phase, we briefly mention the similarities with and differences from the
directed polymer model. If one speculates that the free energy of droplet excitations for spin glasses is also
logarithmic at Tc, one obtains a logarithmic decay for the mean square correlation function at criticality,
C2�r��1/ �ln r��, instead of the usual power law 1/rd−2+�.
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I. INTRODUCTION

The model of a directed polymer in a random medium
plays the role of a “baby spin-glass” model in the field of
disordered systems �1–5�. At low temperature, there exists a
disorder-dominated phase, where the order parameter is an
“overlap” �2,4,6,7�. In finite dimensions, a scaling droplet
theory was proposed �5,8�, in direct correspondence with the
droplet theory of spin glasses �9�, whereas in the mean-field
version of the model on the Cayley tree, a freezing transition
very similar to the one occurring in the random energy model
was found �2�. The phase diagram as a function of space
dimension d is the following �1�. In dimension d
2, there is
no free phase, i.e., any initial disorder drives the polymer
into the strong-disorder phase, whereas for d�2, there exists
a phase transition between the low-temperature disorder-
dominated phase and a free phase at high temperature
�10,11�, where the free energy has its annealed value. This
phase transition has been studied exactly on a Cayley tree �2�
and on hierarchical lattice �12�. In finite dimensions, bounds
on the critical temperature Tc have been derived �11,13,14�:
T0�d�
Tc
T2�d�. The upper bound T2�d� corresponds to

the temperature above which the ratio ZL
2 / �ZL�2 remains fi-

nite as L→�. The lower bound T0 corresponds to the tem-
perature below which the annealed entropy becomes nega-
tive. In d=3, the critical properties have been studied
numerically by �13,15�, with different conclusions. The study
of �13� gives a slightly negative value 
�−0.1, whereas the
work of �15� yields a correlation length exponent ��4, cor-
responding through hyperscaling to 
=2−��−2.

In related growth models belonging to the Kardar-Parisi-
Zhang �KPZ� universality class, numerical studies and theo-
retical arguments �16–18� have found that the height-height

correlation function is logarithmic at the transition. For the
directed polymer model at criticality, this translates into
logarithmic free-energy fluctuations �F�l���ln l�� with an
exponent �=1/2 that has been measured in d=3 �15,16�. In
this paper, we make a droplet analysis at criticality based on
this logarithmic scaling, in direct correspondence with the
Fisher-Huse droplet theory of the low-temperature phase
based on the free-energy scaling �F�l�� l�. The matching
between the two droplet distributions below Tc and at Tc
allows us to derive that the typical correlation length ��T� of
the low-temperature phase does not follow a power law �Tc
−T�−�, but diverges instead as ln ��T���ln 1 / �Tc−T��1/�.
Moreover, we argue that the logarithmic fluctuations of the
free energy at criticality leads to the conclusion that the criti-
cal temperature Tc actually coincides with the upper bound
T2 derived by Derrida and co-workers, since T2 corresponds
to the temperature below which the ratio ZL

2 / �ZL�2 diverges
exponentially in L.

The paper is organized as follows. In Sec. II, we explain
on the pure wetting and Poland-Scheraga model of DNA
denaturation how the transition can be analyzed in terms of
the distribution of large loops. The same approach will then
be adapted in the remainder of the paper to analyze the freez-
ing transition of the directed polymer, using the loop distri-
bution between two independent copies of the polymer in the
same disordered sample. In Sec. III, we describe the Fisher-
Huse droplet theory of the low-temperature phase based on
the scaling �F�l�� l�. In Sec. IV, we describe the droplet
theory based on the logarithmic scaling of the free energy at
criticality �F�l���ln l�� with �=1/2, and we obtain the di-
vergence of the correlation length ��T� near Tc, as well as the
behavior of the overlap. In Sec. V, we argue that the transi-
tion temperature Tc coincides with the upper bound T2 de-
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rived by Derrida and co-workers, and discuss why it is not
the case in other disordered systems. Finally, in Sec. VI, we
discuss the case of spin glasses for which the Fisher-Huse
droplet theory was initially developed. If one assumes, by
analogy with the directed polymer model, that the free en-
ergy of droplet excitations is logarithmic at Tc, one obtains
some unusual behavior for the correlation function at criti-
cality. Our conclusions are summarized in Sec. VII. In the
Appendix, we explain in more detail the matching procedure
for the correlation function that we use in this paper.

II. PURE DELOCALIZATION TRANSITIONS: ANALYSIS
IN TERMS OF THE LOOP DISTRIBUTION

A. Wetting and Poland-Scheraga model of DNA denaturation

The wetting model is defined by the partition function

Zwetting�2L� = �
RW

exp�� �
1


N

�
�z2
,0	 �1�

where the sum is over one-dimensional random walks �RWs�
of 2L steps, starting at z�0�=0, with increments z�
+1�
−z�
�= ±1. The random walk is constrained to remain in the
upper half plane z�0, but gains an adsorption energy �0 if
z�
�=0.

The Poland-Scheraga �PS� model of DNA denaturation
�19� is closely related to the wetting model. It describes the
configuration of the two complementary strands as a se-
quence of bound segments and open loops. Each loop of
length l has a polymeric entropic weight

M�l� �
�l

lc �2�

whereas each contact has a Boltzmann weight e−��0. The
partial partition function ZPS�1,
� with bound ends at mono-
mers 1 and 
 satisfies the simple recursion relation

ZPS�1,
� = e−��
 �

�=1


−1

M�
 − 
��ZPS�1,
�� . �3�

The wetting model �1� corresponds to a Poland-Scheraga
model with parameter �=2 and loop exponent c=3/2 �this
exponent comes from the first-return distribution of a one-
dimensional random walk�. These models without disorder
are simple to solve explicitly: they undergo a phase transition
between a localized phase at low temperature, characterized
by an extensive number of contacts, and a delocalized phase
at high temperature. The transition is first order for c�2, and
second order for 1�c�2 with correlation length exponent
�=1/ �c−1�. Let us now describe how this transition can be
understood from the point of view of the loop distribution.

B. Loop distribution in the low-temperature phase

For the wetting or Poland-Scheraga model with loop ex-
ponent c, the loop distribution normalized to unity


 dl P�l,T� = 1 �4�

can be explicitly computed �20�. Near Tc, it is useful to de-
compose it into two terms

P�l,T� = Pfinite�l,T� + Plarge�l,T� . �5�

The first term represents the statistics of finite loops l
=1,2 , . . ., whereas the second contribution concerning large
loops l�1 follows the scaling form

dl Plarge�l,T� = N�T�
dl

l
�� l

��T�
	 . �6�

Here ��T� is the correlation length that diverges at the tran-
sition ��Tc�=�, and the factor N�T� represents the “normal-
ization” of large loops. In the Poland-Scheraga model, the
dependence on l of the probability of a large loop of length l
involves the entropic weight 1 / lc of a free loop of length l
entering the definition of the model �2� and the extensive
free-energy cost �F�l�= l

��T� �where we have used hyperscal-

ing�

Plarge�l,T� �
1

lce−�l/��T� �7�

so that the scaling function � in Eq. �6� reads

���� �
1

�c−1e−��. �8�

Let us now consider the number of contacts nL�T�. In the
low-temperature phase, it is extensive and simply reads

nL�T� =
L

�b�T + �l�T
�9�

where �b�T represents the averaged length of sequences of
consecutive bound monomers �which remains finite as T
→Tc�, and where �l�T represents the averaged loop length of
the full distribution �5�

�l�T =
 dl l�Pfinite�l,T� + Plarge�l,T��

= �finite� +
 dl N�T��� l

��T�
	

= �finite� + N�T���T� 
 d� ���� . �10�

For 1�c�2, this averaged loop length diverges as

�l�T � N�T���T� . �11�

In the wetting and Poland-Scheraga models, the energy is
directly proportional to the number of contacts �9�, so that
the energy density also vanishes as

e�T� =
1

�l�T
�

1

N�T���T�
. �12�

On the other hand, the singularity of the energy is given by
the derivative of the free-energy density f�T��1/��T� with
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respect to temperature. The critical behavior of the energy is
governed by

e�T� � −
d

dT

1

��T�
�

1

�2�T�
d��T�

dT
. �13�

The comparison between Eqs. �12� and �13� yields the fol-
lowing differential equation for the correlation length ��T� in
terms of the normalization N�T�:

d ln ��T�
dT

=
1

N�T�
. �14�

C. Loop distribution at criticality

At criticality, the loop distribution is simply given by the
entropic weight that enters the definition of the model �2�,

dl Plarge�l,Tc� �
dl

lc . �15�

For c�2, the averaged length �l�=
dl lPlarge�l ,Tc� is finite,
so that the number n�Tc� of contacts with the substrate is still
extensive n�Tc��L and the transition is first order. For 1
�c�2, the averaged length �l� diverges,

�l�Tc
=
 dl lPlarge�l,Tc� = � . �16�

The number of contacts is not extensive any longer at criti-
cality nL�Tc� /L�1/ �l�Tc

=0. Since the Lévy sum of n inde-
pendent variables li drawn from the distribution �15� scales
as l1+ . . . + ln�n1/�c−1�, the number of contacts nL

pure�Tc� in a
sample of length L scales as

nL
pure�Tc� � Lc−1 �17�

and the transition is second order. Let us now make the con-
nection with the low-temperature phase.

D. Matching the loop distribution in the critical region

On a length of order l���T�, the two expressions �6� and
�15� for the loop distribution for T�Tc and for T=Tc should
be of the same order,

Plarge„��T�,T… = Plarge„��T�,Tc… . �18�

This matching determines the normalization factor N�T� in
terms of the correlation length ��T�,

N�T� � ���T��1−c. �19�

So as the transition is approached, T→Tc, the correlation
length diverges, ��T�→ +�, but the density of these large
loops vanishes, N�T�→0.

The differential equation �14� becomes a closed equation
for ��T�,

d��T�
dT

� ���T��c. �20�

The integration with the condition ��Tc�=� gives

Tc − T � 

��T�

+� dx

xc � ���T��1−c, �21�

leading to

��T� � �Tc − T�−� with � =
1

c − 1
, �22�

in agreement with the exact solution. Note that the normal-
ization of large loops vanishes linearly �19� independently of
the loop exponent c,

N�T� � ���T��1−c � �Tc − T� . �23�

E. Important ideas for the following sections on disordered
systems

In this section, we have explained how the delocalization
transition for the pure wetting or Poland-Scheraga models
could be interpreted as a vanishing density N�T→Tc�→0 of
large loops of characteristic size that diverges ��T→Tc�
→�. An important point for the following sections is that the
notion of loop distribution which it is natural to consider in
the low-temperature phase where the number of contacts is
extensive, nL�T��L, has still a meaning exactly at Tc even if
the number of contacts is no longer extensive. It loses its
meaning only in the high-temperature phase where the num-
ber of contacts remains finite. The main idea of the following
sections is thus that in disordered systems presenting a low-
temperature phase where the order parameter is an overlap,
the droplet distribution is not only useful for T�Tc but has
still a meaning exactly at Tc even if the overlap vanishes.
Moreover, it is precisely this critical droplet distribution that
determines the properties of the transition.

III. DIRECTED POLYMER: LOOP DISTRIBUTION
IN THE LOW- TEMPERATURE PHASE

The directed model is defined by the partition function
over d-dimensional random walks x�i� of L steps,

ZL��� = �
�x�i��

e−�E„�x�i��… with E„�x�i��… = �
i=1

L

�„i,x�i�…

�24�

where the random energies ��i ,x� are independent. We have
already described in the Introduction its main features, with
the corresponding references.

A. Statistics of excitations above the ground state

The droplet theory for directed polymers �5,8� is similar
to the droplet theory of spin glasses �9�. It is a scaling theory
that can be summarized as follows. At very low temperature
T→0, all observables are governed by the statistics of low-
energy excitations above the ground state. An excitation of
large length l costs a random energy

�E�l� � l�u �25�

where u is a positive random variable distributed with some
law Q0�u� having some finite density at the origin Q0�u=0�
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�0. The exponent � is the exponent governing the fluctua-
tion of the energy of the ground state is exactly known in one
dimension, ��d=1�=1/3 �21–24�, and for the mean-field ver-
sion on the Cayley tree, ��d=��=0 �2�. In finite dimensions
d=2,3 ,4 ,5 , . . ., the exponent ��d� has been numerically
measured �25–28�, and we quote the results of the most pre-
cise study we are aware of �28� for dimensions d=2,3 :��d
=2�=0.244 and ��d=3�=0.186. Note that the existence of a
finite upper critical dimension dc where the exponent would
vanish, ��dc�=0, has remained a very controversial issue be-
tween the numerical studies �25–28� and various theoretical
approaches �29–31�.

From Eq. �25�, the probability distribution of large exci-
tations l�1 reads within the droplet theory

dl ��E = 0,l� �
dl

l
e−��E�l� �

dl

l
e−�l�u �26�

where the factor dl / l comes from the notion of independent
excitations �5�. In particular, its average over the disorder
follows the power law

dl ��E = 0,l� � 

0

+�

du Q0�u�
dl

l
e−�l�u = TQ�0�

dl

l1+� .

�27�

This prediction describes very well the numerical data in the
regime 1� l�L in dimensions d=1,2 ,3 �32�.

B. Low-temperature phase governed by a zero-temperature
fixed point

According to the droplet theory, the whole low-
temperature phase 0�T�Tc is governed by a zero-
temperature fixed point. However, many subtleties arise be-
cause the temperature is actually “dangerously irrelevant.”
The main conclusions of the droplet analysis �5� can be sum-
marized as follows. The scaling �25� governs the free-energy
cost of an excitation of length l, provided one introduces a
correlation length ��T� to rescale the length l,

�F�l� = � l

��T�
	�

u . �28�

Here as before, u denotes a positive random variable distrib-
uted with some law Q�u� having some finite density at the
origin Q�u=0��0. Moreover, this droplet free energy is a
near cancellation of energy and entropy contributions that
scale as �5�

�E�l� � l1/2w , �29�

where w is a random variable of order O�1� and of zero
mean. The argument is that the energy and entropy are domi-
nated by small-scale contributions of random sign �5�,
whereas the free energy is optimized on the coarse-grained
scale ��T�. These predictions for the energy and entropy have
been numerically checked in �5,33�.

C. Loop distribution for two polymers in the same disordered
sample

We now describe how the analysis of Sec. II for the pure
transition of the wetting or Poland-Scheraga model can be
adapted to the present disordered case. For T�Tc, the num-
ber of contacts of two independent polymers x�i� and y�i� in
the same disordered sample

nL�T� = �
i=1

L

��x�i�,y�i�� �30�

is extensive, and the density of contacts, also called the over-
lap, is precisely the order parameter of the low-temperature
phase �2,4,6,7�,

q�T� = lim
L→�

�nL�T�
L

	 . �31�

Note that on the Cayley tree where �=0, the distribution of
this overlap is made of two � peaks at q=0 and at q=1 �2�,
whereas in finite dimensions with ��0, the distribution of
this overlap is expected to be a single � function at q�T� �4�.

One may thus analyze the configuration of two polymers
in the same sample in terms of contacts separated by loops.
Again, it is useful to make the decomposition �5� to concen-
trate on the contribution of large loops that follows a scaling
form based on the free-energy scaling of a droplet of length
l �28�,

dl Plarge�l,T� = N�T�
dl

l
e−��F�l� = N�T�

dl

l
e−��l/��T���u.

�32�

As in the wetting case, the factor N�T� represents the nor-
malization of large loops which will be determined below.

The important difference with respect to the pure case is
that now the probability of a large loop at a given spatial
position depends upon a random variable u. This introduces
very different behaviors for typical and averaged loop distri-
butions. The averaged loop distribution has the following
power-law decay in the whole low-temperature phase:

dl Plarge�l� =
dl

l
N�T�


0

+�

du Q�u�e−��l/��T���u

�
l→�

N�T�Q�0�T
dl

l
� ��T�

l
	�

, �33�

whereas the typical decay is an exponential with exponent �,

ln Plarge�l� = ln�N�T�/l� − �� l

��T�
	�

u0, �34�

with u0=
0
+�du uQ�u�. In particular, the typical distribution

dl Ptyp�l� = N�T�
dl

l
e−��l/��T���u0 �35�

has a finite first moment
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�l�large =
 dl lPtyp�l� � N�T���T� . �36�

As the transition is approached, this term will govern the
divergence of the first moment of the full droplet distribu-
tion,

�l�tot = �l�finite + �l�large � N�T���T� . �37�

As a consequence, the number nL�T� of contacts �and equiva-
lently the number of loops� will have a vanishing density of
order

nL�T�
L

�
1

�l�T
=

1

N�T���T�
. �38�

D. Energy fluctuations near the transition

Let us now consider the specific heat c�T� that measures
the fluctuations of the energy EL,

T2c�T� =
1

L
Š�EL − �EL��2

‹ =
d2

d�2� ln ZL���
L

	 . �39�

In the high-temperature phase, the specific heat coincides
with its annealed value. In particular, for the model �24� with
the following Gaussian distribution for the random energies
��i ,x�:

���� =
1

�2�
e−�2/2, �40�

the annealed specific heat reads

T2cann�T� = 1, �41�

meaning that the energy fluctuations per monomer are �e2

=1. In the low-temperature phase, the free energy is above
the annealed free energy, and this implies that the specific
heat is less than the annealed value, with a nondiverging
singular part �3�. More precisely if one introduces the spe-
cific heat exponent 
, we have

c�T� − cann�Tc� � − A�Tc − T�−
 with A � 0 and 
 
 0.

�42�

To interpret this loss of energy fluctuations in the low-
temperature phase in terms of the droplets, it is convenient to
write the energy fluctuations in terms of the energy differ-
ence between two copies x�i� and y�i� of the polymer in the
same disordered sample,

1

L
Š�EL − �EL��2

‹ =
1

2L
��E„�x�i��… − E„�y�i��…�2�

=
1

2L���
i=1

L

��„i,x�i�… − �„i,y�i�…�	2�
�43�

=
1

2L��
i=1

L

��„i,x�i�… − �„i,y�i�…�2�
+

1

L� �
1
i�j
L

��„i,x�i�… − �„i,y�i�…�

���„j,x�j�… − �„j,y�j�…�� . �44�

In this sum, the monomers i corresponding to a contact
x�i�=y�i� do not contribute, whereas the monomers i inside
loops x�i��y�i� are expected to have an energy fluctuation
of order �ei

2�1 �Eq. �29��. As explained above, for T�Tc

all monomers are characterized by energy fluctuations �ei
2

�1. We thus write that the extensive loss in energy fluctua-
tions just below Tc is proportional to the density of contacts
x�i�=y�i� obtained in Eq. �38�:

� 1
L
Š�EL − �EL��2

‹�
Tc

− � 1
L
Š�EL − �EL��2

‹�
T

�
nL�T�

L
�

1
N�T���T� . �45�

Near Tc, the free-energy density f�T�=−T ln ZL��� /L be-
haves from hyperscaling as

f�T� − f�Tc� =
1

��T�
. �46�

Deriving twice with respect to temperature �39�, the singular
part of the energy fluctuations behaves as

� 1

L
Š�EL − �EL��2

‹�
Tc

− � 1

L
Š�EL − �EL��2

‹�
T

�
d2

dT2� 1

��T�
	 .

�47�

The consistency of Eqs. �45� and �47� then gives the fol-
lowing differential equation for the correlation length ��T� in
terms of the normalization N�T�:

d2

dT2� 1

��T�
	 �

1

N�T���T�
. �48�

IV. DIRECTED POLYMER: LOOP DISTRIBUTION
EXACTLY AT CRITICALITY

A. Logarithmic fluctuations of the free energy

Let us now consider what happens for T=Tc. Forrest and
Tang �16� have conjectured from their numerical results on a
growth model in the KPZ universality class and from the
exact solution of another model �34� that the fluctuations of
the height of the interface were logarithmic at criticality. For
the directed polymer model, this translates into a logarithmic
behavior of the free energy fluctuations at Tc

�F�L,Tc� � �ln L��v �49�

where v is a positive random variable of order 1 distributed
with some law R�v�, and where the exponent was measured
to be in d=3 �15,16�
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� =
1

2
. �50�

Further theoretical arguments in favor of this logarithmic
behavior can be found in �17,18�. The argument of �17� is
that the power-law behavior F�L ,Tc��L�c is impossible at
criticality so that �c=0. From the scaling relation �c=2�c
−1 between exponents �35�, the roughness exponent � is ex-
pected to be exactly �c=1/2 �17�, and a renormalization ar-
gument then leads to logarithmic fluctuations of the free en-
ergy �18�.

B. Loop distribution at criticality

With the scaling �49�, the loop distribution exactly at criti-
cality reads

dlPTc
�l� =

dl

l
e−��F�l� =

dl

l
e−�c�ln l��v. �51�

The averaged loop distribution has then the following ex-
tremely slow decay:

dl PTc
�l� =

dl

l



0

+�

dv R�v�e−�c�ln l��v �
l→�

R�0�Tc
dl

l�ln l��

�52�

whereas the typical decay is given by

ln PTc
�l� = − ln l − �c�ln l��v0 �53�

with v0=
0
+�dv vR�v�. The typical distribution

dl PTc

typ�l� =
dl

l
e−�c�ln l��v0 �54�

has an infinite first moment for 0���1 �independently of
the prefactor �cv0�

�l�Tc
=
 dl lPTc

typ = � �55�

and the number of contacts nL�Tc� is not extensive in L.

C. Matching the typical loop distribution in the critical
region

For l��, the two expressions of the typical correlations in
the low-temperature phase �35� and at criticality �54� should
coincide as in �18�,

Ptyp„��T�,T… = Ptyp„��T�,Tc… . �56�

This gives the following relation between the normalization
and the correlation length ��T�,

N�T� � e−K�ln ���
, �57�

where K��cv0 is some constant.
Using �48�, we thus obtain the following closed differen-

tial equation for the correlation length ��T�:

d2

dT2� 1

��T�
	 �

1

��T�
eK�ln ���

. �58�

Near the boundary condition ��Tc�=�, the leading diver-
gence of ��T� is given by

1

�Tc − T�2 � eK�ln ���
. �59�

We thus obtain at leading order that the correlation length
��T� diverges as

��T� � e��2/K�ln 1/�Tc − T��1/�+¯ �60�

instead of the usual power-law behavior ��T���Tc−T�−�.
The free-energy difference thus vanishes very slowly as

f�T� − f�Tc� �
1

��T�
� e−��2/K�ln 1/�Tc − T��1/�+¯. �61�

The normalization of large droplet vanishes at leading or-
der as �48�

N�T� � �Tc − T�2 �62�

and the contact density or overlap as �31�

q�T� = lim
L→�

�nL�T�
L

	 �
1

N�T���T�

� e−��2/K�ln 1/�Tc − T��1/�+2 ln1/�Tc−T�+¯. �63�

In particular, for the value �=1/2 measured in d=3
�15,16�, we obtain the final results

f�T� − f�Tc� �
1

��T�
� e−��2/K�ln 1/�Tc − T��2+¯, �64�

q�T� � e−��2/K�ln 1/�Tc − T��2+2 ln 1/�Tc−T�+¯. �65�

V. DIRECTED POLYMER: EXPLICIT VALUE
OF THE CRITICAL TEMPERATURE

A. Exact bounds on Tc derived by Derrida and co-workers

Let us first recall the physical meaning of the exact
bounds for the critical temperature derived by Derrida and
co-workers �11,13,14�,

T0�d� 
 Tc 
 T2�d� . �66�

The upper bound T2�d� corresponds to the temperature above
which the ratio

RL�T� =
ZL

2

�ZL�2 �67�

remains finite as L→�. The lower bound T0 corresponds to
the temperature below which the annealed entropy becomes
negative.

In dimensions d=1,2, the upper bound is at infinity T2
=�, whereas for d�3, the upper bound T2 is finite. The
interpretation is as follows �14�. The ratio �67� can be de-
composed according to the probability PL�m� that two inde-
pendent usual random walks in dimension d meet m times
before time L
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RL�T� = �
m=1

L

P�m�Bm, �68�

where the factor

B�T� =
e2��

�e���2 �69�

can be explicitly computed for any distribution of the site
disorder variable �. In dimensions d=1,2, two random walks
meet an infinite number of times as L→�, whereas for d
�3, they meet a finite number m of times as L→�. The
distribution of m decays exponentially

P�m� � �1 − A�Am �70�

where �1−A� is the finite probability of never meeting again.
T2 is defined as the temperature where

AB�T2� = 1. �71�

For T�T2, B�T��B�T2�=1/A, and the ratio RL�T� has a
finite limit

R��T � T2� =
1 − A

1 − AB�T�
. �72�

For T�T2, RL�T� is a geometric series of parameter AB�T�
�1, and it thus diverges exponentially in L

RL�T � T2� � �1 − A��
m=1

L

�AB�T��m � �AB�T��L. �73�

Exactly at T2, the ratio diverges but not exponentially,

RL�T2� = �1 − A��
m=1

L

1 � L . �74�

B. Interpretation in terms of the probability distribution
of free energies

Let us now interpret the above results of the ratio RL�T� in
terms of the probability distribution PL�F� of the free energy
F=−kT ln ZL over the samples of length L. By definition
�67�, one has

RL�T� =

 dF PL�F�e−2�FL

�
 dF PL�F�e−�FL�2 . �75�

For T�T2�d�, the ratio R��T� is finite: this means that the
fluctuations of the free energy over the samples,

��FL�samples
2 =
 dF PL�F�F2 − �
 dF PL�F�F	2

, �76�

remain of order O�1� in the limit L→�.
On the other hand, for the directed polymer in the low-

temperature phase T�Tc, the fluctuation of free energies
over the samples is expected to have the same scaling as the

fluctuation of free energies within the same sample when the
end point varies �5�: the fluctuations of free energy over the
samples are thus governed by the droplet exponent �,

��FL�samples�T � Tc� � ��FL�droplet�T � Tc� � L�. �77�

Let us now recall Zhang’s argument �1� that allows one to
determine the exponent � of the tail of the free-energy dis-
tribution,

PL�F → − �� � e−��F�/L���
. �78�

Moments of the partition function can be then evaluated by
the saddle-point method, with a saddle value F* lying in the
negative tail �78�,

ZL
n =
 dF PL�F�e−n�FL �
 dF e−��F�/L���

e−n�FL

� ec�n�L��/��−1�
. �79�

Since these moments of the partition function have to di-
verge exponentially in L, the exponent � of the tail �78�
reads in terms of the droplet exponent

� =
1

1 − �
. �80�

C. Why Tc coincides with T2 for the directed polymer in finite
dimensions

At Tc, the fluctuations of the free energy are expected to
be logarithmic, as discussed around Eq. �49�,

�F � �ln L�� with � =
1

2
. �81�

From these logarithmic fluctuations, it seems rather difficult
to obtain an exponential divergence in L of the ratio RL�Tc�
�75�, so the strict inequality Tc�T2 seems very unlikely. On
the contrary, if Tc=T2, it is very natural to obtain the diver-
gence found for the ratio at T2 �74�,

RL�T2� � L � eln L. �82�

Moreover, to obtain the linear divergence �74�, the saddle-
point method described above for the low-temperature phase
�79� gives that the tail of the free-energy distribution should
be at criticality

PTc
�F → − �� � e−��F�/�ln L����c with �c =

1

1 − �
. �83�

The value �=1/2 corresponds to the tail exponent �c=2.
Our conclusion is thus that the critical temperature in fi-

nite dimension d coincides with the temperature T2�d�,

Tc�d� = T2�d� . �84�

Explicit expressions for T2�d� in terms of the usual integrals
appearing in the theory of random walks can be found in
�11,13� for site and bond disorder, respectively.

As a final remark, let us mention that for the directed
polymer on the Cayley tree that plays the role of a mean-field
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version of the model, the critical temperature does not coin-
cide with the upper bound T2, but coincides with the lower
bound T0 �66� below which the annealed entropy becomes
negative �11�,

Tc�Cayley� = T0�Cayley� � T2�Cayley� . �85�

This shows that the mean-field limit of the tree structure
changes the nature of the transition with respect to the finite-
dimensional case. The technical reason seems to be that �
=0 and �F=O�1� in the low-temperature phase of the Cay-
ley tree, whereas Zhang’s argument above is consistent only
if �=1/ �1−���1 to ensure the convergence in the presence
of the exponential term e−�nF �Eq. �79��. When �=0, the tail
of PL�F→−�� is also an exponential eaF/��F� as in the ran-
dom energy model �2� and one has to take into account the
minimal free energy that can be obtained for a finite size L.
From a physical point of view, the reason is that the configu-
rations of two polymers in the same disordered sample are
very different. In finite dimensions, contacts and loops alter-
nate extensively, whereas on the tree, the loops simply do not
exist: the two polymers may only coincide over some dis-
tance and then never meet again. Since the exponential tail
found for the Cayley tree actually corresponds to the univer-
sal Gumbel tail for the minimum of independent variables,
this shows that the nonexponential tail found in finite dimen-
sions reflects the importance of correlations between the free
energies of paths due to the presence of loops.

D. Why Tc is different from T2 in other finite-dimensional
disordered systems

The fact that the fluctuations of free energies over the
samples have the same scaling as the droplet excitations
within one given sample �77� is very specific to the directed
polymer model. In other disordered models, such as spin
glasses for instance, the fluctuations of free energies over the
samples scale instead as �36,37�.

��FL�samples � Ld/2 �86�

at any temperature. This scaling simply reflects the central-
limit fluctuations of the Ld disorder variables defining the
sample. The directed polymer escapes from these normal
fluctuations because it is a one-dimensional path existing in a
1+d disordered sample: each configuration of the polymer
only experiences L random variables among the L1+d disor-
der variables that define the sample, and the polymer can
“choose” the random variables it sees. So for other disor-
dered systems having fluctuations over the samples governed
by �86�, the ratio RL�T� will diverge exponentially as any
temperature. The temperature T2 is thus infinite,

T2 = � , �87�

and has nothing to do with any critical temperature. How-
ever, the droplet exponent � is expected to govern the cor-
rection to the extensive part of the mean value �37�,

FL � Ldf0 + L�f1. �88�

It can for instance be measured in the free-energy difference
upon a change of boundary conditions that forces the intro-
duction of some domain wall in the sample �9�.

VI. SPIN GLASSES

In this section, we briefly mention the analogies and dif-
ferences between spin glasses and the directed polymer
model described above.

A. Fisher-Huse droplet theory of the low-temperature phase

Discussions on the droplets statistics in pure Ising models
can be found in Refs. �38–40�. Here we only summarize very
briefly the Fisher-Huse droplet theory of the spin-glass phase
�9�.

The free energy to make an excitation of large size l fol-
lows the scaling

�F�l,T� � � l

��T�
	�

u �89�

where u is a positive random variable of distribution Q�u�.
The truncated correlation function

C�r� � ��S0Sr� − �S0��Sr�� �90�

for large distance r is governed by the probability that the
two points o and r belongs to the same large droplet

C�r� � N�T�e−�r/��T���u �91�

where the prefactor N�T� corresponds to the Edwards-
Anderson �EA� parameter

N�T� � C„��T�… � qEA�T� =
1

V
�

i

�Si�2. �92�

The typical decay of the correlation function is

ln C�r� = ln qEA�T� − � r

��T�
	�

u0, �93�

whereas the mean-square correlation function

C2�r� � TQ�0�qEA
2 �T�� ��T�

r
	�

�94�

has a power-law decay in the whole low-temperature phase.

B. Spin glasses at criticality

As mentioned above, the exponent � of excitations is ex-
pected to govern the correction to extensively of the aver-
aged free energy in the low-temperature phase �Eq. �88��. At
criticality where the extensive part of the free energy van-
ishes, the averaged free energy is thus expected to be gov-
erned by the free-energy scale of excitations at Tc

FL�Tc� � ��FL�Tc��droplet. �95�

According to the argument of �17�, a power-law behavior
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FL�Tc� � L�c �96�

is not possible at a critical point, so that �c=0. The droplet
free energy at criticality can thus only be logarithmic,

��FL�Tc��droplet � �ln L��v , �97�

where v is a random variable. In pure models, the power-law
decay of truncated correlation can be interpreted as a loga-
rithmic cost with �pure=1. It therefore seems natural to ex-
pect 0���1, since in the low-temperature phase, the free-
energy cost l� in the presence of disorder is much less than
the free-energy cost ld−1 of pure systems.

Then the truncated correlation �90� is expected to behave
at large distance as

C�r� � e−�c�Fr�Tc� � e−�c�ln r��v. �98�

The typical decay is then given by

ln C�r� = − �ln r���cv0 �99�

whereas the mean-square correlation function decays very
slowly as

C2�r� �
TcQ�0�
�ln r�� , �100�

in contrast with the usual power-law correlation C2�r�
�1/rd−2+� �9�. The matching at scale r���T� between the
typical correlation functions at T�Tc �Eq. �93�� and at Tc
�Eq. �99�� yields the following relation between the
Edwards-Anderson parameter qEA�T� and the correlation
length ��T�:

ln qEA�T� � − �ln ��T���. �101�

For the directed polymer model, it was possible to carry
the discussion further because the one-dimensional structure
provides a connection between the divergence of large loops
and the total number of small loops �38�. In spin glasses, the
relation between properties of large droplets that dominate
the correlation function and properties of small droplets that
dominate the energy fluctuations depends on geometric as-
sumptions on the shape of the droplets and on their spatial
organization. This goes beyond the present work.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed a coherent picture of the
freezing transition of directed polymers in dimension d�3
from the following building blocks: �i� the Fisher-Huse drop-
let theory of the low-temperature phase; �ii� the Forrest-Tang
result concerning the height-height correlation exactly at
criticality in related growth models belonging to the KPZ
universality class; and �iii� the exact bounds on the critical
temperature of Derrida and co-workers.

Our main conclusions are that the critical temperature Tc
coincides with the upper bound T2 derived by Derrida and
co-workers, and that the logarithmic fluctuations at criticality
�F�l ,Tc���ln l�� with �=1/2 lead to unusual critical prop-
erties. In particular, the typical correlation length ��T� of the
low-temperature phase, diverges as ln ��T���−ln�Tc−T��1/�

��−ln�Tc−T��2, instead of the usual power law ��T���Tc

−T�−�. These results emerge from the following picture. Be-
low Tc, the number of contacts of two polymers in the same
disordered sample is extensive, and their configuration can
be thus described as a sequence of contacts and loops. As the
transition is approached, the averaged length loops diverges,
but our main point is that the loop distribution has still a
meaning exactly at Tc. �It loses its meaning only in the high-
temperature phase.� Moreover, it is precisely this critical
droplet distribution that determines the properties of the tran-
sition.

Finally, since the directed polymer plays the role of a
baby-spin-glass model, we have briefly mentioned some
similarities and differences with the directed polymer model.
We have discussed some consequences for the Edwards-
Anderson order parameter and the mean-square averaged
correlation, if one speculates that the free energy of droplet
excitations for spin glasses is also logarithmic at Tc. Note
that the freezing transition of the directed polymer model is
completely asymmetric with respect to Tc: there is no singu-
larity in thermodynamic quantities as T→Tc

+ �3�, since the
free energy coincides with its annealed value for T�Tc. For
the spin-glass transition, this raises the question of the rela-
tions between the critical properties below and above Tc.

We are presently studying numerically various aspects of
the freezing transition of the directed polymer in d=3 �41� to
see if the scenario proposed in the present paper can be dis-
criminated from the usual power-law critical behaviors used
previously in the literature to analyses the data �13,15�.

APPENDIX: MATCHING PROCEDURE FOR
CORRELATION FUNCTIONS IN THE CRITICAL REGION

We explain in more detail in this appendix the matching
procedure used in the text. We illustrate it with explicit ex-
amples concerning the truncated correlation function at large
distance

CT�r� = �S0Sr� − �S0��Sr� �A1�

in pure spin models.

1. Finite-size scaling theory for the correlation function

It is useful to introduce the ratio �=r /��T� to rewrite the
correlation function as

CT�r� = G�r,� =
r

��T�
	 . �A2�

At criticality where ��Tc�=�, the correlation function is
given by the limit �→0

CTc
�r� = G�r,� = 0� . �A3�

In the opposite regime where ��1, the correlation is ex-
pected to become a scaling function of the ratio � with a
temperature-dependent prefactor N�T�

CT�r� �
��1

N�T���� =
r

��T�
	 . �A4�

The matching procedure between the two regimes �→0 and
��1 consists in requiring that the two expressions should
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have the same order of magnitude at the matching value �*

=r* /��T��1: this determines the normalization factor N�T�
as

N�T� � CTc
„r* � ��T�… . �A5�

We now illustrate the above scheme with Ising and XY mod-
els in d=2.

2. The Ising model in d=2

Exactly at Tc, the correlation function is given by the
power law of exponent �=1/4

CTc
�r� �

1

r1/4 . �A6�

For T�Tc, the correlation function follows the Ornstein-
Zernicke form �40�

CT�Tc
�r� � N+�T�� ��T�

r
	1/2

e−r/��T� �A7�

whereas for T�Tc the exact decay at large distance is �42�

CT�Tc
�r� � N−�T�� ��T�

r
	2

e−2r/��T� �A8�

The physical interpretation of this form in terms of droplets
can be found in �38–40�. The matching relation yields

N±�T� � CTc
�r* � ��T�� �

1

�1/4�T�
. �A9�

Using ��T���Tc−T�−1, the normalizations of �A7� and �A8�
are in agreement with the exact results of �42�.

More generally in spin models in dimension d for T�Tc,
the normalization N−�T� is directly related to the order pa-
rameter m�T�= �Si�T�� via

N−�T� � m2�T� . �A10�

The decay of the correlation function at criticality defines the
exponent �

CTc
�r� �

1

rd−2+� . �A11�

The matching procedure �A5� then reads

N�T� � CTc
„r* � ��T�… �

1

�d−2+��T�
. �A12�

With Eq. �A10�, this matching condition simply corresponds
to the usual relation 2�= �d−2+��� between critical expo-
nents.

3. The XY model in d=2

Since the correlation length is infinite in the whole low-
temperature phase �T
Tc�, we consider only the matching

procedure for T�Tc. Exactly at Tc, the correlation function
is given by �43,44�

CTc
�r� �

�ln r�1/8

r1/4 . �A13�

For T�Tc, the correlation function follows the Ornstein-
Zernicke form �45�

CT�Tc
�r� � N+�T�� ��T�

r
	1/2

e−r/��T�. �A14�

The matching procedure �A5� yields

N+�T� � CTc
„r* � ��T�… �

�ln ��T��1/8

�1/4�T�
�A15�

where the correlation length presents the essential singularity
divergence ��T��eA/�Tc − T�1/2

.

4. Discussion

The above examples show that whenever the critical cor-
relation function is a pure power law �CTc

�r��r−��, the off-
critical correlation function can be rewritten in the factorized
form

CT�r� � CTc
�r���� =

r

��T�
	 �A16�

that corresponds to the form �A4� in the regime ��1 with
����=�d−2+����� and N�T�=1/�d−2+��T�.

However, if CTc
�r� is not a pure power law, as in the XY

case, the simple factorization �A16� cannot be written.
The relations with the polymer models discussed in the

text are as follows. The loop distribution P�l ,T� plays the
role of a correlation function.

In the pure Poland-Scheraga model where the loop distri-
bution at criticality is a power law �15�, the off-critical loop
distribution can be written in the factorized form �7�

Plarge�l,T� � Plarge�l,Tc��� l

��T�
	 �A17�

as in the Ising model above. In this form, the limit ��T�
→� can be taken to recover the critical distribution.

In the directed polymer model where the critical loop dis-
tribution is not a power law but involves a logarithm �51�,
the off-critical loop distribution �35� cannot be written in a
factorized form involving the critical loop distribution, as in
the XY model discussed above. In particular, in the explicit
expression �35� with �57�, valid in the regime l���T�, one
cannot take blindly the limit ��T�→� to recover the critical
loop distribution.
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